A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation
نویسندگان
چکیده
In this paper, we develop an overlapping domain decomposition (DD) based Jacobi-Davidson (JD) algorithm for a polynomial eigenvalue problem arising from quantum dot simulation. Both DD and JD have several adjustable components. The goal of the work is to figure out if it is possible to choose the right components of DD and JD such that the resulting approach has a near linear speedup for a fine mesh calculation. Through experiments, we find that the key is to use two different coarse meshes. One is used to obtain a good initial guess that helps to achieve quadratic convergence of the nonlinear JD iterations. The other guarantees scalable convergence of the linear solver of the correction equation. We report numerical experiments carried out on a supercomputer with over 10,000 processors.
منابع مشابه
A Parallel Scalable PETSc-Based Jacobi-Davidson Polynomial Eigensolver with Application in Quantum Dot Simulation
The Jacobi-Davidson (JD) algorithm recently has gained popularity for finding a few selected interior eigenvalues of large sparse polynomial eigenvalue problems, which commonly appear in many computational science and engineering PDE based applications. As other inner–outer algorithms like Newton type method, the bottleneck of the JD algorithm is to solve approximately the inner correction equa...
متن کاملA parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation
We develop a parallel Jacobi-Davidson approach for finding a partial set of eigenpairs of large sparse polynomial eigenvalue problems with application in quantum dot simulation. A Jacobi-Davidson eigenvalue solver is implemented based on the Portable, Extensible Toolkit for Scientific Computation (PETSc). The eigensolver thus inherits PETSc’s efficient and various parallel operations, linear so...
متن کاملNumerical simulation of three dimensional pyramid quantum dot
We present a simple and efficient numerical method for the simulation of the three-dimensional pyramid quantum dot heterostructure. The pyramid-shaped quantum dot is placed in a computational box with uniform mesh in Cartesian coordinates. The corresponding Schr€ odinger equation is discretized using the finite volume method and the interface conditions are incorporated into the discretization ...
متن کاملImproving the parallel performance of a domain decomposition preconditioning technique in the Jacobi-Davidson method for large scale eigenvalue problems
Most computational work in Jacobi-Davidson [9], an iterative method for large scale eigenvalue problems, is due to a so-called correction equation. In [5] a strategy for the approximate solution of the correction equation was proposed. This strategy is based on a domain decomposition preconditioning technique in order to reduce wall clock time and local memory requirements. This report discusse...
متن کاملIntroducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells
With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...
متن کامل